↳ Prolog
↳ PrologToPiTRSProof
reach_in_gggg(X, Y, E, L) → U1_gggg(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U6_gg(X, H, L, member_in_gg(X, L))
U6_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, E, L, member_out_gg(.(X, .(Y, [])), E)) → reach_out_gggg(X, Y, E, L)
reach_in_gggg(X, Z, E, L) → U2_gggg(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U7_ag(X, H, L, member1_in_ag(X, L))
U7_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_gggg(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_gggg(X, Z, E, L, Y, member_in_gg(Y, L))
U3_gggg(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_gggg(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
delete_in_gga(X, .(X, Y), Y) → delete_out_gga(X, .(X, Y), Y)
delete_in_gga(X, .(H, T1), .(H, T2)) → U8_gga(X, H, T1, T2, delete_in_gga(X, T1, T2))
U8_gga(X, H, T1, T2, delete_out_gga(X, T1, T2)) → delete_out_gga(X, .(H, T1), .(H, T2))
U4_gggg(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_gggg(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U5_gggg(X, Z, E, L, reach_out_gggg(Y, Z, E, V1)) → reach_out_gggg(X, Z, E, L)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
reach_in_gggg(X, Y, E, L) → U1_gggg(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U6_gg(X, H, L, member_in_gg(X, L))
U6_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, E, L, member_out_gg(.(X, .(Y, [])), E)) → reach_out_gggg(X, Y, E, L)
reach_in_gggg(X, Z, E, L) → U2_gggg(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U7_ag(X, H, L, member1_in_ag(X, L))
U7_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_gggg(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_gggg(X, Z, E, L, Y, member_in_gg(Y, L))
U3_gggg(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_gggg(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
delete_in_gga(X, .(X, Y), Y) → delete_out_gga(X, .(X, Y), Y)
delete_in_gga(X, .(H, T1), .(H, T2)) → U8_gga(X, H, T1, T2, delete_in_gga(X, T1, T2))
U8_gga(X, H, T1, T2, delete_out_gga(X, T1, T2)) → delete_out_gga(X, .(H, T1), .(H, T2))
U4_gggg(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_gggg(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U5_gggg(X, Z, E, L, reach_out_gggg(Y, Z, E, V1)) → reach_out_gggg(X, Z, E, L)
REACH_IN_GGGG(X, Y, E, L) → U1_GGGG(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
REACH_IN_GGGG(X, Y, E, L) → MEMBER_IN_GG(.(X, .(Y, [])), E)
MEMBER_IN_GG(X, .(H, L)) → U6_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGGG(X, Z, E, L) → U2_GGGG(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
REACH_IN_GGGG(X, Z, E, L) → MEMBER1_IN_AG(.(X, .(Y, [])), E)
MEMBER1_IN_AG(X, .(H, L)) → U7_AG(X, H, L, member1_in_ag(X, L))
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
U2_GGGG(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_GGGG(X, Z, E, L, Y, member_in_gg(Y, L))
U2_GGGG(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → MEMBER_IN_GG(Y, L)
U3_GGGG(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_GGGG(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
U3_GGGG(X, Z, E, L, Y, member_out_gg(Y, L)) → DELETE_IN_GGA(Y, L, V1)
DELETE_IN_GGA(X, .(H, T1), .(H, T2)) → U8_GGA(X, H, T1, T2, delete_in_gga(X, T1, T2))
DELETE_IN_GGA(X, .(H, T1), .(H, T2)) → DELETE_IN_GGA(X, T1, T2)
U4_GGGG(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_GGGG(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U4_GGGG(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → REACH_IN_GGGG(Y, Z, E, V1)
reach_in_gggg(X, Y, E, L) → U1_gggg(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U6_gg(X, H, L, member_in_gg(X, L))
U6_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, E, L, member_out_gg(.(X, .(Y, [])), E)) → reach_out_gggg(X, Y, E, L)
reach_in_gggg(X, Z, E, L) → U2_gggg(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U7_ag(X, H, L, member1_in_ag(X, L))
U7_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_gggg(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_gggg(X, Z, E, L, Y, member_in_gg(Y, L))
U3_gggg(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_gggg(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
delete_in_gga(X, .(X, Y), Y) → delete_out_gga(X, .(X, Y), Y)
delete_in_gga(X, .(H, T1), .(H, T2)) → U8_gga(X, H, T1, T2, delete_in_gga(X, T1, T2))
U8_gga(X, H, T1, T2, delete_out_gga(X, T1, T2)) → delete_out_gga(X, .(H, T1), .(H, T2))
U4_gggg(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_gggg(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U5_gggg(X, Z, E, L, reach_out_gggg(Y, Z, E, V1)) → reach_out_gggg(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
REACH_IN_GGGG(X, Y, E, L) → U1_GGGG(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
REACH_IN_GGGG(X, Y, E, L) → MEMBER_IN_GG(.(X, .(Y, [])), E)
MEMBER_IN_GG(X, .(H, L)) → U6_GG(X, H, L, member_in_gg(X, L))
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
REACH_IN_GGGG(X, Z, E, L) → U2_GGGG(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
REACH_IN_GGGG(X, Z, E, L) → MEMBER1_IN_AG(.(X, .(Y, [])), E)
MEMBER1_IN_AG(X, .(H, L)) → U7_AG(X, H, L, member1_in_ag(X, L))
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
U2_GGGG(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_GGGG(X, Z, E, L, Y, member_in_gg(Y, L))
U2_GGGG(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → MEMBER_IN_GG(Y, L)
U3_GGGG(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_GGGG(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
U3_GGGG(X, Z, E, L, Y, member_out_gg(Y, L)) → DELETE_IN_GGA(Y, L, V1)
DELETE_IN_GGA(X, .(H, T1), .(H, T2)) → U8_GGA(X, H, T1, T2, delete_in_gga(X, T1, T2))
DELETE_IN_GGA(X, .(H, T1), .(H, T2)) → DELETE_IN_GGA(X, T1, T2)
U4_GGGG(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_GGGG(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U4_GGGG(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → REACH_IN_GGGG(Y, Z, E, V1)
reach_in_gggg(X, Y, E, L) → U1_gggg(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U6_gg(X, H, L, member_in_gg(X, L))
U6_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, E, L, member_out_gg(.(X, .(Y, [])), E)) → reach_out_gggg(X, Y, E, L)
reach_in_gggg(X, Z, E, L) → U2_gggg(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U7_ag(X, H, L, member1_in_ag(X, L))
U7_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_gggg(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_gggg(X, Z, E, L, Y, member_in_gg(Y, L))
U3_gggg(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_gggg(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
delete_in_gga(X, .(X, Y), Y) → delete_out_gga(X, .(X, Y), Y)
delete_in_gga(X, .(H, T1), .(H, T2)) → U8_gga(X, H, T1, T2, delete_in_gga(X, T1, T2))
U8_gga(X, H, T1, T2, delete_out_gga(X, T1, T2)) → delete_out_gga(X, .(H, T1), .(H, T2))
U4_gggg(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_gggg(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U5_gggg(X, Z, E, L, reach_out_gggg(Y, Z, E, V1)) → reach_out_gggg(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
DELETE_IN_GGA(X, .(H, T1), .(H, T2)) → DELETE_IN_GGA(X, T1, T2)
reach_in_gggg(X, Y, E, L) → U1_gggg(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U6_gg(X, H, L, member_in_gg(X, L))
U6_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, E, L, member_out_gg(.(X, .(Y, [])), E)) → reach_out_gggg(X, Y, E, L)
reach_in_gggg(X, Z, E, L) → U2_gggg(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U7_ag(X, H, L, member1_in_ag(X, L))
U7_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_gggg(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_gggg(X, Z, E, L, Y, member_in_gg(Y, L))
U3_gggg(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_gggg(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
delete_in_gga(X, .(X, Y), Y) → delete_out_gga(X, .(X, Y), Y)
delete_in_gga(X, .(H, T1), .(H, T2)) → U8_gga(X, H, T1, T2, delete_in_gga(X, T1, T2))
U8_gga(X, H, T1, T2, delete_out_gga(X, T1, T2)) → delete_out_gga(X, .(H, T1), .(H, T2))
U4_gggg(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_gggg(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U5_gggg(X, Z, E, L, reach_out_gggg(Y, Z, E, V1)) → reach_out_gggg(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
DELETE_IN_GGA(X, .(H, T1), .(H, T2)) → DELETE_IN_GGA(X, T1, T2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
DELETE_IN_GGA(X, .(H, T1)) → DELETE_IN_GGA(X, T1)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
reach_in_gggg(X, Y, E, L) → U1_gggg(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U6_gg(X, H, L, member_in_gg(X, L))
U6_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, E, L, member_out_gg(.(X, .(Y, [])), E)) → reach_out_gggg(X, Y, E, L)
reach_in_gggg(X, Z, E, L) → U2_gggg(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U7_ag(X, H, L, member1_in_ag(X, L))
U7_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_gggg(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_gggg(X, Z, E, L, Y, member_in_gg(Y, L))
U3_gggg(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_gggg(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
delete_in_gga(X, .(X, Y), Y) → delete_out_gga(X, .(X, Y), Y)
delete_in_gga(X, .(H, T1), .(H, T2)) → U8_gga(X, H, T1, T2, delete_in_gga(X, T1, T2))
U8_gga(X, H, T1, T2, delete_out_gga(X, T1, T2)) → delete_out_gga(X, .(H, T1), .(H, T2))
U4_gggg(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_gggg(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U5_gggg(X, Z, E, L, reach_out_gggg(Y, Z, E, V1)) → reach_out_gggg(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
MEMBER1_IN_AG(X, .(H, L)) → MEMBER1_IN_AG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
MEMBER1_IN_AG(.(H, L)) → MEMBER1_IN_AG(L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
reach_in_gggg(X, Y, E, L) → U1_gggg(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U6_gg(X, H, L, member_in_gg(X, L))
U6_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, E, L, member_out_gg(.(X, .(Y, [])), E)) → reach_out_gggg(X, Y, E, L)
reach_in_gggg(X, Z, E, L) → U2_gggg(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U7_ag(X, H, L, member1_in_ag(X, L))
U7_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_gggg(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_gggg(X, Z, E, L, Y, member_in_gg(Y, L))
U3_gggg(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_gggg(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
delete_in_gga(X, .(X, Y), Y) → delete_out_gga(X, .(X, Y), Y)
delete_in_gga(X, .(H, T1), .(H, T2)) → U8_gga(X, H, T1, T2, delete_in_gga(X, T1, T2))
U8_gga(X, H, T1, T2, delete_out_gga(X, T1, T2)) → delete_out_gga(X, .(H, T1), .(H, T2))
U4_gggg(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_gggg(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U5_gggg(X, Z, E, L, reach_out_gggg(Y, Z, E, V1)) → reach_out_gggg(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
MEMBER_IN_GG(X, .(H, L)) → MEMBER_IN_GG(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U2_GGGG(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_GGGG(X, Z, E, L, Y, member_in_gg(Y, L))
U3_GGGG(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_GGGG(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
U4_GGGG(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → REACH_IN_GGGG(Y, Z, E, V1)
REACH_IN_GGGG(X, Z, E, L) → U2_GGGG(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
reach_in_gggg(X, Y, E, L) → U1_gggg(X, Y, E, L, member_in_gg(.(X, .(Y, [])), E))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U6_gg(X, H, L, member_in_gg(X, L))
U6_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U1_gggg(X, Y, E, L, member_out_gg(.(X, .(Y, [])), E)) → reach_out_gggg(X, Y, E, L)
reach_in_gggg(X, Z, E, L) → U2_gggg(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U7_ag(X, H, L, member1_in_ag(X, L))
U7_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
U2_gggg(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_gggg(X, Z, E, L, Y, member_in_gg(Y, L))
U3_gggg(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_gggg(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
delete_in_gga(X, .(X, Y), Y) → delete_out_gga(X, .(X, Y), Y)
delete_in_gga(X, .(H, T1), .(H, T2)) → U8_gga(X, H, T1, T2, delete_in_gga(X, T1, T2))
U8_gga(X, H, T1, T2, delete_out_gga(X, T1, T2)) → delete_out_gga(X, .(H, T1), .(H, T2))
U4_gggg(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → U5_gggg(X, Z, E, L, reach_in_gggg(Y, Z, E, V1))
U5_gggg(X, Z, E, L, reach_out_gggg(Y, Z, E, V1)) → reach_out_gggg(X, Z, E, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U2_GGGG(X, Z, E, L, member1_out_ag(.(X, .(Y, [])), E)) → U3_GGGG(X, Z, E, L, Y, member_in_gg(Y, L))
U3_GGGG(X, Z, E, L, Y, member_out_gg(Y, L)) → U4_GGGG(X, Z, E, L, Y, delete_in_gga(Y, L, V1))
U4_GGGG(X, Z, E, L, Y, delete_out_gga(Y, L, V1)) → REACH_IN_GGGG(Y, Z, E, V1)
REACH_IN_GGGG(X, Z, E, L) → U2_GGGG(X, Z, E, L, member1_in_ag(.(X, .(Y, [])), E))
member_in_gg(H, .(H, L)) → member_out_gg(H, .(H, L))
member_in_gg(X, .(H, L)) → U6_gg(X, H, L, member_in_gg(X, L))
delete_in_gga(X, .(X, Y), Y) → delete_out_gga(X, .(X, Y), Y)
delete_in_gga(X, .(H, T1), .(H, T2)) → U8_gga(X, H, T1, T2, delete_in_gga(X, T1, T2))
member1_in_ag(H, .(H, L)) → member1_out_ag(H, .(H, L))
member1_in_ag(X, .(H, L)) → U7_ag(X, H, L, member1_in_ag(X, L))
U6_gg(X, H, L, member_out_gg(X, L)) → member_out_gg(X, .(H, L))
U8_gga(X, H, T1, T2, delete_out_gga(X, T1, T2)) → delete_out_gga(X, .(H, T1), .(H, T2))
U7_ag(X, H, L, member1_out_ag(X, L)) → member1_out_ag(X, .(H, L))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
U4_GGGG(Z, E, Y, delete_out_gga(V1)) → REACH_IN_GGGG(Y, Z, E, V1)
U3_GGGG(Z, E, L, Y, member_out_gg) → U4_GGGG(Z, E, Y, delete_in_gga(Y, L))
U2_GGGG(Z, E, L, member1_out_ag(.(X, .(Y, [])))) → U3_GGGG(Z, E, L, Y, member_in_gg(Y, L))
REACH_IN_GGGG(X, Z, E, L) → U2_GGGG(Z, E, L, member1_in_ag(E))
member_in_gg(H, .(H, L)) → member_out_gg
member_in_gg(X, .(H, L)) → U6_gg(member_in_gg(X, L))
delete_in_gga(X, .(X, Y)) → delete_out_gga(Y)
delete_in_gga(X, .(H, T1)) → U8_gga(H, delete_in_gga(X, T1))
member1_in_ag(.(H, L)) → member1_out_ag(H)
member1_in_ag(.(H, L)) → U7_ag(member1_in_ag(L))
U6_gg(member_out_gg) → member_out_gg
U8_gga(H, delete_out_gga(T2)) → delete_out_gga(.(H, T2))
U7_ag(member1_out_ag(X)) → member1_out_ag(X)
member_in_gg(x0, x1)
delete_in_gga(x0, x1)
member1_in_ag(x0)
U6_gg(x0)
U8_gga(x0, x1)
U7_ag(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U3_GGGG(Z, E, L, Y, member_out_gg) → U4_GGGG(Z, E, Y, delete_in_gga(Y, L))
Used ordering: Polynomial interpretation [25]:
U4_GGGG(Z, E, Y, delete_out_gga(V1)) → REACH_IN_GGGG(Y, Z, E, V1)
U2_GGGG(Z, E, L, member1_out_ag(.(X, .(Y, [])))) → U3_GGGG(Z, E, L, Y, member_in_gg(Y, L))
REACH_IN_GGGG(X, Z, E, L) → U2_GGGG(Z, E, L, member1_in_ag(E))
POL(.(x1, x2)) = 1 + x2
POL(REACH_IN_GGGG(x1, x2, x3, x4)) = 1 + x4
POL(U2_GGGG(x1, x2, x3, x4)) = 1 + x3
POL(U3_GGGG(x1, x2, x3, x4, x5)) = 1 + x3
POL(U4_GGGG(x1, x2, x3, x4)) = x4
POL(U6_gg(x1)) = 0
POL(U7_ag(x1)) = 0
POL(U8_gga(x1, x2)) = 1 + x2
POL([]) = 0
POL(delete_in_gga(x1, x2)) = x2
POL(delete_out_gga(x1)) = 1 + x1
POL(member1_in_ag(x1)) = 0
POL(member1_out_ag(x1)) = 0
POL(member_in_gg(x1, x2)) = x2
POL(member_out_gg) = 0
delete_in_gga(X, .(H, T1)) → U8_gga(H, delete_in_gga(X, T1))
delete_in_gga(X, .(X, Y)) → delete_out_gga(Y)
U8_gga(H, delete_out_gga(T2)) → delete_out_gga(.(H, T2))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
U4_GGGG(Z, E, Y, delete_out_gga(V1)) → REACH_IN_GGGG(Y, Z, E, V1)
U2_GGGG(Z, E, L, member1_out_ag(.(X, .(Y, [])))) → U3_GGGG(Z, E, L, Y, member_in_gg(Y, L))
REACH_IN_GGGG(X, Z, E, L) → U2_GGGG(Z, E, L, member1_in_ag(E))
member_in_gg(H, .(H, L)) → member_out_gg
member_in_gg(X, .(H, L)) → U6_gg(member_in_gg(X, L))
delete_in_gga(X, .(X, Y)) → delete_out_gga(Y)
delete_in_gga(X, .(H, T1)) → U8_gga(H, delete_in_gga(X, T1))
member1_in_ag(.(H, L)) → member1_out_ag(H)
member1_in_ag(.(H, L)) → U7_ag(member1_in_ag(L))
U6_gg(member_out_gg) → member_out_gg
U8_gga(H, delete_out_gga(T2)) → delete_out_gga(.(H, T2))
U7_ag(member1_out_ag(X)) → member1_out_ag(X)
member_in_gg(x0, x1)
delete_in_gga(x0, x1)
member1_in_ag(x0)
U6_gg(x0)
U8_gga(x0, x1)
U7_ag(x0)